Chapter 1: Sections 1.4, 1.5, and 1.6 Answer Key

Section 1.4

1. The prime factorization of a composite number is the number written as a product of its prime factors.
2. First, find a factor pair and draw "branches." Next, circle the prime factors as you find them. Then, find factors until each branch ends at a prime factor.
3. 6,9 does not belong because it is a factor pair of 54 and the others are factor pairs of 56 .
4. $2,3,6,9$
5. $3,5,9$
6. $2,3,5,6,9,10$
7. None, 1709 is a prime number.
8. 1,$15 ; 3,5$
9. 1,$22 ; 2,11$
10. 1,$34 ; 2,17$
11. 1,$39 ; 3,13$
12. 1,$45 ; 3,15 ; 5,9$
13. 1,$54 ; 2,27 ; 3,18 ; 6,9$
14. 1.59
15. 1,61
16. $2 \cdot 2 \cdot 2 \cdot 2$ or 2^{1}
17. $5 \cdot 5$ or 5^{2}
18. $2 \cdot 3 \cdot 5$
19. $2 \cdot 13$
20. $2 \cdot 2 \cdot 3 \cdot 7$ or $2^{2} \cdot 3 \cdot 7$
21. $2 \cdot 3 \cdot 3 \cdot 3$ or $2 \cdot 3^{3}$
22. $5 \cdot 13$
23. $7 \cdot 11$
24. 9 is not prime, it is equal to
$3 \cdot 3$.
$72=2 \cdot 2 \cdot 2 \cdot 3 \cdot 3=2^{3} \cdot 3^{2}$
25.

26. 180
27. 1575
28. 12,584
29. 4
30. 25
31. 36
32. 1
33. yes; 2 is a prime number because it only has 1 and itself as factors. The rest of the even whole numbers have 2 as a factor.
34. composite; The total number of players on the baschall team is equal to the number in each group times the number of groups, so it must be composite.
35. See Taking Math Deeper.
36. 6
37. cupcake table; Because 60 has more factors than 75 , there are more rectangular arrangements.
38. 26 yd
35. $36=1 \bullet 36$ There can't be 1 group of 36 students.
$36=2 \cdot 18$ There can't be 2 groups of 18 students.
$36=3 \cdot 12$ There can't be 3 groups of 12 students.
$36=4 \cdot 9 \quad$ There can't be 4 groups of 9 students.
$36=6 \cdot 6$ There can be 6 groups of 6 students.
$36=9 \cdot 4 \quad$ There can be 9 groups of 4 students.
There are 2 possible group sizes: 6 groups of 6 students and 9 groups of 4 students.
36. 6
37. cupcake table; Because 60 has more factors than 75 , there are more rectangular arrangements.
38. 26 yd
39. 6 prisms; There are 6 unique arrangements of length, width, and height using the factors of 40 . (Note that $1 \times 1 \times 40$ names the same prism as $40 \times 1 \times 1$.; $1 \times 1 \times 40,1 \times 2 \times 20,1 \times 4 \times 10$, $1 \times 5 \times 8,2 \times 2 \times 10,2 \times 4 \times 5$
40. 145
41. 357
42. 2395
43. 1248
44. B

Section 1.5

1. The GCF is the greatest factor that is shared by the two numbers.
2. First, find the prime factorization of both numbers. Next, identify common prime factors. Then, find the product of the common prime factors.
3. What is the greatest prime factor of 24 and $32 ? ; 2 ; 8$
4. 6
5. 2
6. 12
7. 3
8. 14
9. 1
10. 13
11. 17
12. 1
13. 15
14. 9
15. 9
16. 12
17. 1
18. 1
19. 7 is the greatest common prime factor. The GCF is $2 \cdot 7=14$
20. Not all of the common prime factors are included. the GCF is $2^{2} \cdot 3=12$.
21. 23 packets

22. 8 arrangements

23. 7
24. 6
25. 14
26. Sample answer: 16,32 , and 48 ; Multiply 16 by 1,2 , and 3 .
27. Sample answer: Prime factorization because it is tedious to find all the factors of large numbers.
28. sometimes
29. always
30. never
31. 12; 6 red, 5 pink, and 4 yellow
32. a.

b. 6
c. 18; 12; The GCF of two numbers is the product of the prime factors in the overlap of the circles representing the numbers in the Venn diagram.
33. a. Because 73 is a prime number and the GCF of the three numbers is 1 .
b. 18; The GCF of 54 and 36 is 18.18 divides evenly into 72 leaving one banana left over.

Section 1.6

1. The LCM of two numbers is the least of the multiples shared by the two numbers.
2. First, find the prime factorization of both numbers. Next, circle each different factor where it appears the greatest number of times. Then, find the product of the circled factors.
3. 21
4. 24
5. 60
6. 18
7. 12
8. 72
9. 40
10. 60
11. 36
12. 63
13. 108
14. 90
15. 180
16. 350
17. The product of two numbers is not necessarily the I.C.M. Use prime factorization to see that the ICM is $2 \cdot 3 \cdot 3=18$.
18. 15 days
19. 4 packs of hot dogs and 5 packs of buns
20. D; This model represents multiples of 4 and 6 which have an I.CM of 12 . The other models represent multiples of 3 and 8,8 and 12 , and 6 and 8 , which have an LCM of 24 .
21. 42
22. 165
23. 36
24. 120
25. 126
26. 1260
27. Sample answer: Prime factorization because it is tedious to list all of the multiples of two numbers that do not have any common factors.
28. always
29. sometimes
30. never
31. See Taking Math Deeper.
32. 300th caller
33. you: 7 mi ; your friend: 6 mi
34. a. Prime

b. The LCM of 16,24 , and 40 is
$2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5=240$
c. The LCM of 16 and 40 is $2 \cdot 2 \cdot 2 \cdot 2 \cdot 5=80$.

The LCM of 24 and 40 is $2 \cdot 2 \cdot 2 \cdot 3 \cdot 5=120$
36. The LCM of the two numbers is equal to their product when the two numbers have no common prime factors.
37. 3^{2}
38. 5^{4}
39. 17^{5}
40. B

