Answer Key: Chapter 4 Areas of Polygons, Section 4.1

1. The area of a polygon is the amount of surface it covers. The perimeter of a polygon is the distance around the polygon.
2. Answer should include, but is not limited to: Students should construct the parallelogram to actual size. The most common method will be to use a ruler. However, some may use grid paper, a software program, or something else.
3. $18 \mathrm{ft}^{2}$
4. $840 \mathrm{~mm}^{2}$
5. $187 \mathrm{~km}^{2}$
6. $3750 \mathrm{~cm}^{2}$
7. 243 in. ${ }^{2}$
8. $894 \mathrm{mi}^{2}$
9. 15 meters was used for the height
instead of 13 meters.
$A=8(13)=104 \mathrm{~m}^{2}$
10. $6 \mathrm{in} .^{2}$
11. 12 units 2
12. 9 units 2
13. 24 units 2
14. $64 \mathrm{~cm}^{2}$
15. $72 \mathrm{~m}^{2}$
16. $96 \mathrm{ft}^{2}$
17. See Taking Math Deeper.
18. 22 times

19. 287 in. 2
20.

Parallelogram	Base	Height	Area
A	$x+4$	5	$5 x+20$
B	$x-3$	8	$8 x-24$
C	6	$2 x+y$	$12 x+6 y$

21. $n^{2} b h$ where b represents the base and h represents the height of the original parallelogram, or $n^{2} A$ where A represents the area of the original parallelogram.
22. $n^{2} b h$ where b represents the base and h represents the height of the original parallelogram, or $n^{2} A$ where A represents the area of the original parallelogram.
23. 13
24. 1640
25. 480
26. 118
27. B

Answer Key Section 4.2 Area of Triangles (keep scrolling down)

22. Comm. Prop. of Mult.
23. Assoc. Prop. of Add.
24. C

1. bases: 4 ft and 7 ft ;
height: 15 ft
2. height h and bases b_{1} and b_{2}
3. $2 \ell+2 w$. This is an expression for the perimeter of a rectangle. The other three are expressions for area (triangle, rectangle, and trapezoid).
4. 12 units 2

24 units 2
6. 27 units 2
7. $28 \mathrm{in}^{2}$
8. $10 \mathrm{~cm}^{2}$
9. $105 \mathrm{ft}^{2}$
10. The height was not included in the formula.
$A=\frac{1}{2}(8)(6+14)=80 \mathrm{~m}^{2}$
11. 8 units 2
12. 16 units 2
13. 12 units 2
14. $16 \mathrm{ft}^{2}$
15. $60 \mathrm{in}^{2}$
16. $253 \mathrm{~cm}^{2}$
17. $78 \mathrm{mi}^{2}$
18. $301 \mathrm{~m}^{2}$
19. 18 ft
20. Sample answers:
$b_{1}=2 \mathrm{ft}, b_{2}=3 \mathrm{ft}$;
$b_{1}=1.5 \mathrm{ft}, b_{2}=3.5 \mathrm{ft}$
21. See Taking Math Deeper.
22. a. $x>0$ and $x<15$ inches; For $x=15$ inches the area of the trapezoid is twice
the area of the triangle,
so x must be less than
15 inches.
b. no; When $x=15$ inches the quadrilateral is a rectangle, not a trapezoid.

23-26.

Answer Key: 4.4 Polygons/Coordinate Plane (scroll down)

1. Plot the points that represent the vertices of the polygon and connect the points in order.
2. Assume that all of the sides are vertical or horizontal. Find the points with the same y-coordinates. Subtract the x-coordinates of those points to find the length of the horizontal sides. Find the points with the same x-coordinates. Subtract the y-coordinates of those points to find the length of the vertical sides. Last, add the lengths of all four sides to find the perimeter.
3.

Length of $C D$ is 8 units.
4.

Length of $K L$ is 4 units.
5.

Length of $O R$ is 5 units.
6.

7.

8.

9.

10.

11.

12. 12 units; 9 units 2
13. 24 units; 36 units 2
14. 16 units; 15 units 2
15. 28 units; 45 units 2
16. The x - and y-coordinates are rever:

+
\vdots

a. square
b. $28 \mathrm{ft} ; 49 \mathrm{ft}^{2}$
18. Sample answer:

19. Sample answer:

20. Sample answer:

21. Sample answer:

22. Sample answer: $(6,1)$ and $(8,9)$
28. 27 miles; There are only two ways to go from station P to station L. Traveling from station P t N to M to L is 27 miles. Traveling from station P to J to K to L is 33 miles.
24. $41 \mathrm{mi}^{2}$
25. 2.5 times larger
26. See Taking Math Deeper.
27. 2
28. $8 \frac{4}{5}$
29. $\frac{5}{16}$
30. $3 \frac{19}{27}$
31. D

